A controllability counterexample

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A K Counterexample Machine

We present a general method for constructing families of measure preserving transformations which are K and loosely Bernoulli with various ergodic theoretical properties. For example, we construct two K transformations which are weakly isomorphic but not isomorphic, and a K transformation with no roots. Ornstein’s isomorphism theorem says families of Bernoulli shifts cannot have these propertie...

متن کامل

A counterexample to sparse removal

The Turán number of a graph H, denoted ex(n,H), is the maximum number of edges in an n-vertex graph with no subgraph isomorphic to H. Solymosi [17] conjectured that if H is any graph and ex(n,H) = O(n) where α > 1, then any n-vertex graph with the property that each edge lies in exactly one copy of H has o(n) edges. This can be viewed as conjecturing a possible extension of the removal lemma to...

متن کامل

A counterexample to Dhillon (1998)

In an important paper, Amrita Dhillon [3] provided a multi-profile version of Harsanyi’s [5] single-profile theorem on utilitarianism. Like Harsanyi, she assumed that the social alternatives are lotteries. Individuals’ preferences satisfy the von Neumann-Morgenstern (vN-M) axioms, and have thus an expected utility representation. A social welfare function maps profiles of individuals’ preferenc...

متن کامل

A Counterexample to Borsuk's Conjecture

Let f(d) be the smallest number so that every set in Rd of diameter 1 can be partitioned into f(d) sets of diameter smaller than 1. Borsuk's conjecture was that f(d)=d+\ . We prove that f(d)>(\.2)^ for large d.

متن کامل

Akizuki's Counterexample

Following [Akizuki], I construct a Noetherian local integral domain CM whose normalisation (integral closure) is not finite over CM . My proof follows closely Akizuki’s ingenious calculations. Let A be a DVR with local parameter t and residue field k = A/(t), and  the completion of A. There are no restrictions on the characteristic of A or k, but I assume that  contains a transcendental eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2005

ISSN: 0018-9286

DOI: 10.1109/tac.2005.849223